Human body

CONTENTS

<table>
<thead>
<tr>
<th>System</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skeletal system</td>
<td>4</td>
</tr>
<tr>
<td>Muscular system</td>
<td>6</td>
</tr>
<tr>
<td>Digestive system</td>
<td>8</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>10</td>
</tr>
<tr>
<td>Circulatory system</td>
<td>12</td>
</tr>
<tr>
<td>Lymphatic system</td>
<td>14</td>
</tr>
<tr>
<td>Nervous system</td>
<td>16</td>
</tr>
<tr>
<td>Endocrine system</td>
<td>18</td>
</tr>
<tr>
<td>Urinary system</td>
<td>20</td>
</tr>
<tr>
<td>Reproductive system</td>
<td>22</td>
</tr>
<tr>
<td>How to use this book</td>
<td>24</td>
</tr>
<tr>
<td>Index</td>
<td>26</td>
</tr>
</tbody>
</table>
Our skeleton consists of all our bones, teeth, cartilage, and joints. Some bones protect our internal organs. Some bones provide a framework for the body (just as the spokes of an umbrella provide a framework). Some bones contain red marrow that produces blood cells and yellow marrow that also stores fat.

Cartilage

Cartilage is softer than bones and is somewhat flexible, like rubber.

Cartilage (shown here in white) connects the ribs to the sternum, allowing the ribs to move as we breathe.

Cartilage supports our nose and outer ears.

Joints contain some cartilage.

Much of an infant’s skeleton consists of cartilage, which is gradually replaced by bone.

The Skull:

the bones that enclose the brain and support the face and teeth

The Backbone

(the spinal column)

The backbone is made of vertebrae (side view)

One vertebra (top view)

A rib attaches here

The spinal cord passes through this hole

The skull: Cranium

Maxilla

Mandible (jaw bone)

Yellow marrow

Red marrow

Cartilage

Cartilage is softer than bones and is somewhat flexible, like rubber.

Cartilage (shown here in white) connects the ribs to the sternum, allowing the ribs to move as we breathe.

Cartilage supports our nose and outer ears.

Joints contain some cartilage.

Much of an infant’s skeleton consists of cartilage, which is gradually replaced by bone.
Skull
Scapula (shoulder blade)
Ribs
Humerus
Radius
Ulna
Carpals
Metacarpals
Phalanges
Femur
Patella
Fibula
Tibia
Tarsals
Metatarsals
Phalanges Calcaneus
Spinal column (backbone)
Clavicle (collar bone)
Sternum (breast bone)
Pelvis
Tailbone (coccyx)

RangaRakes tamilnavarasam.com
How do muscles make us move?

Tendons attach one end of the biceps and triceps to the shoulder blade and the other end to the radius or ulna. Each muscle can pull, but it cannot push. That is why two muscles are needed to bend the arm back and forth at the elbow.

There are three kinds of muscles:

1. **Skeletal muscle**
 These muscles are attached to bones. They are also called ‘voluntary muscles’ because we can consciously contract them. (shown at right and on the facing page)

2. **Smooth muscle**
 These are found in the walls of the digestive tract, urinary bladder, arteries, and other internal organs. They are ‘involuntary muscles’ because we do not consciously control them.

3. **Cardiac muscle**
 These are the muscles of the heart. Their contraction is involuntary and continues in a coordinated rhythm as long as we live.

Some muscles of the back

- **Occipitalis** pulls the head back
- **Latissimus dorsi** rotates and extends the arm
- **Trapezius** draws shoulder down and back

Ligaments attaching the wrist bones to each other.

Tendons attach muscles to bones. Ligaments attach bones to bones.

- **Gluteus maximus** — rotates and extends the thigh

Image credits: Diagrams courtesy of RangaRakes.
Frontalis raises the eyebrows

Oculi Orbicularis closes the eyelids

Orbicularis oris closes the lips

Trapezius raises, rotates, or draws back the shoulders, and pulls the head back or to the side

Deltoid raises and rotates the arm

Pectorals draw the shoulder forward and rotates the arm inward

Biceps bends the arm at the elbow

Triceps straightens the elbow

Rectus abdominus draws the abdomen in

Finger flexors bend the fingers

Finger extensors (behind) straighten the fingers

Sartorius bends the hip or knee and rotates the thigh outward

Adductor rotates the leg sideways

Quadriceps femoris straightens the knee or bends the hip joint

Gastrocnemius bends the knee and lifts the heel

Soleus extends the foot forward

Peroneus extends the foot and turns it outward
Every cell in our body does work. Work requires energy, which is supplied by the food we eat. Food also supplies the small molecules that are the building blocks for cell maintenance, growth, and function.

Digestion breaks down food into materials the body can use:

1. Your sense receptors work together with your brain to make you hungry. Saliva increases (you produce more than 1 litre/day), and helps digest food while it is mechanically torn, cut, crushed, and ground in your mouth.

2. The passages of your digestive system are lined with involuntary muscles that contract in waves to squeeze food along.

3. Your stomach stores food so that you need not eat continuously. It also breaks down food with acid and enzymes.

4. The salivary glands, pancreas, liver, and gallbladder secrete and store digestive juices.

5. The small intestine is where most of the chemical digestion and nutrient absorption into the bloodstream takes place.

6. The large intestine reclaims water and releases waste.

SWALLOWING

When swallowing, muscles move the epiglottis down to close the opening to the trachea, so that food and drink do not enter the lungs. The soft palate also moves up, so that food does not go up the nasal passage.

The intestinal Wall

In order to increase its surface area, the intestinal wall is folded, and each fold is lined with villi. This way, more cells come into contact with nutrients in the digested food. Nutrients enter the epithelial cells that line the villi, either by diffusion or active transport. They are then absorbed by capillaries and lymph vessels. Capillaries transport the nutrients to larger blood vessels, then to the portal vein, which goes to the liver. Then the nutrients go to the heart, to be pumped to the rest of the body.

The stomach does not have one fixed shape

Everyone’s internal organs are slightly different. The shape and position of your stomach also depends on how much food it contains, and whether you are standing or lying down.
Mouth
starts mechanical and chemical digestion of food with the help of teeth, tongue, and saliva

Salivary glands
produces saliva, which helps lubricate food for easier swallowing; contains antibacterial agents and the enzyme amylase, which breaks down starch

Pharynx
entering food triggers its swallowing reflex

Oesophagus
a muscular tube that squeezes food along to the stomach

Stomach
stores, mixes, and digests food with the gastric juice it produces, which consists of mucus, enzymes, and hydrochloric acid, producing acid chyme

Liver
blood carrying nutrients from the small intestine passes through the liver, which filters it and breaks down and synthesizes proteins, breaks down carbohydrates into glucose and glycogen, produces bile

Gallbladder
collects bile from the liver, and discharges it into the small intestines, where it helps digest fat

Pancreas
a gland that produces digestive enzymes and an alkaline solution that neutralizes the acid chyme that comes from the stomach; it also secretes the hormone, insulin

Small intestine
a 6 metre long tube in which most of chemical digestion occurs; nutrients are absorbed from here into the bloodstream

Large intestine
absorbs water from the food wastes that have not been digested in the small intestine; also absorbs some important vitamins that are produced by the large numbers of bacteria it harbours

Rectum
stores feces (which consist mainly of indigestible plant fibres, bacteria, and water) until they can be eliminated from the body through the anus
Through respiration we exchange gases with our environment. Our cells require a continuous supply of oxygen \((O_2)\) in order to obtain energy from food molecules. Cells would also die if they were not able to get rid of the carbon dioxide \((CO_2)\) they produce.

The 3 Processes of Gas Exchange:

1. In our lungs, \(O_2\) passes from the air into our blood, and \(CO_2\) passes from our blood into the air. Some water vapour is also released into the air.
2. Our circulatory system transports \(O_2\) and \(CO_2\) to and from all the parts of our body. Haemoglobin molecules in our red blood cells transport \(O_2\).
3. Cells take up \(O_2\) and release \(CO_2\).

The lungs are sacs made of pleural membranes, containing a dense lattice of tubes: bronchi, and the smaller bronchioles. When we inhale air, it travels through this network and fills the tiny air sacs called alveoli. That is where gas exchange with the blood in capillaries takes place.

When we inhale, where does the air go?

- Nostrils
- Nasal cavity
- Pharynx
- Larynx
- Trachia
- Bronchus
- Bronchiole
- Alveolus

What happens in the alveoli?

\(O_2\) from the air diffuses through the thin layer of cells that forms the alveoli walls. Then it enters the web of capillaries that surround each alveoli. \(CO_2\) goes in the opposite direction, from the capillaries to the air.

In the capillaries, \(O_2\) diffuses into red blood cells. Red blood cells contain protein molecules called haemoglobin, which contain iron atoms. Each iron atom can carry an \(O_2\) molecule. When haemoglobin binds \(O_2\), it turns red. Blood without oxygen looks bluish - after passing through the lungs it turns red.
Sinuses
hollow spaces in the skull that are normally filled with air

Nasal cavities
the temperature and humidity of the air we breathe is adjusted in these cavities

Pharynx
its muscles help shape the sounds of our speech

Larynx
contains the vocal cords

Epiglottis

Oesophagus

Trachea (windpipe)

Bronchus

Bronchiole

Lung
where gas exchange occurs

Diaphragm
the muscular structure that makes us breathe - when it contracts, it pulls down and increases the volume of air in the lungs

Heart
The circulatory system transports respiratory gases, nutrient molecules, wastes, and hormones throughout the body. These materials are carried by an intricate network of blood vessels, which follow continuous circuits from the heart through arteries, capillaries, and veins back to the heart. The circulatory system also regulates our body temperature.

Electrical signals make the heart rhythmically contract

An electrical signal is generated by the SA node, and it makes the muscles of the atria contract. The signal spreads, but is slightly delayed in the AV node, which allows the atria time to empty. Then it reaches the bottom of the heart and travels up the sides of the ventricles, causing them to strongly contract.

Valves allow blood to flow in only one direction

- Blood flows from left to right
- Blood cannot flow from right to left

Valves automatically close when blood pushes in the wrong direction.

Your heartbeat sounds like lub-dup, lub-dup, lub-dup... The sound lub comes from blood in the ventricles pushing against (and closing) the AV valves to the atria. The dup comes from the semilunar valves snapping shut after blood is forced out of the ventricles.

Valves similar to these are found in some veins, and in the lymphatic system, as well as in the heart.
Aorta
Pulmonary artery
carries blood from the
right ventricle to the lungs

Heart
pumps blood to the body

Abdominal aorta

Inferior vena cava

Hepatic artery
carries blood to the liver

Portal vein
carries blood from the
stomach, intestines, spleen,
and pancreas to the liver

Iliac vein

Iliac artery

Femoral artery

Femoral vein

Arteries
carry blood from the heart to all parts
of the body; all arteries (except the
pulmonary arteries) carry oxygenated,
red blood

Veins
carry blood from all parts of the body
back to the heart; all veins (except the
pulmonary veins) carry blood that is
deprecated of oxygen and therefore
bluish in colour

Capillaries
very narrow tubes not shown in this
diagram, they connect the ends of all
arteries to to veins; they deliver and pick up
gases, nutrients, and waste products
To remain healthy, our bodies must be regulated in a state of internal balance, under ever-changing conditions.

All the cells in our body live in an interstitial fluid, which supplies their nourishment and carries away waste products. This fluid leaks out from the circulatory system. The lymphatic system provides a way to return excess fluid to the circulatory system, thus keeping fluids in balance.

The fluid which is carried by the lymph vessels is called lymph. It is similar to interstitial fluid, but it has less O₂ and protein, and more fat.

The lymphatic system also plays a role in defending the body from infection. The fluid that is picked up is taken through larger and larger lymph vessels to lymph nodes. Lymph nodes contain lymphocytes and macrophages, which attack microbes and even cancer cells that may be in the lymph.

Finally, lymph re-enters the circulatory system through the thoracic duct and the right lymphatic duct, which drain into veins in the shoulders.

White blood cells in the lymphatic system fight disease

The immune response: lymphocytes are white blood cells that defend the body from viruses, bacteria, and even cancer cells. These invaders are neutralised when their antigens (proteins on their surfaces) are recognized by antibodies made by T-cells and B-cells (types of lymphocytes).

The inflammatory response: damaged cells release chemicals that signal blood vessels to dilate and release fluid and white blood cells such as macrophages, which attack any foreign body.
Lymph nodes
filter out bacteria and other foreign particles.

Tonsils
two lymphoid tissues on each side of the throat that help fight against upper respiratory tract infections.

Thymus
secretes hormones that promote the development of T-cells.

Bone marrow
the tissue that produces blood cells.

Spleen
filters the blood, removing old blood cells, harmful bacteria and abnormal cells and particles; also plays a role in making antibodies.

Lymph nodes
filter out bacteria and other foreign particles.

Lymph vessels
tubes that run alongside arteries and veins, collecting excess lymph and returning it to the blood.

The thymus gland is relatively large in a new-born baby. It is important in producing lymphocytes, which are needed to protect the baby from infections. At puberty the thymus begins to shrink, becoming superfluous in adults.
The nervous system consists of the structures and processes that make up the brain, the spinal cord, and the peripheral nerves distributed throughout the body.

The Functions of the Nervous System:

1. **Sensory Input**
 - the conduction of signals from sensory receptors

2. **Integration**
 - the interpretation of the sensory signals and the formulation of responses

3. **Motor output**
 - the conduction of signals from the brain and spinal cord to effectors, such as muscle and gland cells.

The brain is the site of consciousness. It produces thoughts, feelings, memory, and creativity. It monitors and controls our unconscious and well as conscious actions.

The brain is an exceedingly complex organ, made up of billions of interconnected and interacting nerve cells. An intricate network of blood vessels bring a constant supply of oxygen and glucose, from which these nerve cells get the energy they need to function.

Nerve cells

- Neurons receive and/or transmit electrical and chemical messages
- **Cell body**
- **Nucleus**
- **Axon**
 - The axon of this cell passes an electrical signal to the dendrites of the cell below
- **Dendrite**
 - The dendrites of this neuron accept the signal from the upper neuron.
 - This neuron then passes on the signal through its axon to the muscle cells below.
 - This axon is supported by a series of myelin sheaths, which are made of glial cells.
 - The muscle gets the signal to contract.

There are two types of nerve cells: neurons and glial cells.

The major nerves are bundles of axons. One axon may be more than 1 metre long.

White matter consists mainly of myelin covered axons

Corpus callosum the fibres that unite the two halves of the cerebrum

Grey matter (cerebral cortex) consists mainly of neuron cell bodies

Thalamus controls input and output to cerebrum

Hypothalamus directs signals to and from spinal cord, brain stem, cerebral cortex, and cerebellum

Brain stem regulates heartbeat, breathing, blood pressure, swallowing, etc.

Pituitary gland

Pons

Midbrain

Medulla

Cerebellum coordinates movement, balance, and posture

Spinal cord

Cerebrum integration, memory, learning, speech, emotions

Corpus callosum
Brain — the part of the central nervous system that regulates and controls activities throughout the body; the site of consciousness and memory.

Cranial nerves — connect the brain and organs of the head, relaying sensory inputs and motor control of eyes, nose, mouth, ears, etc.

Spinal cord — the bundle of nerves extending from the brain stem through the backbone, conducts signals to and from the brain; together with the brain, it makes up the central nervous system (CNS).

Peripheral nerves — the network of nerves and ganglia that carry signals to and from the central nervous system; some of the axons are very long, since they must reach from all extremities to the CNS.

Ganglion — a cluster of neuron cell bodies that connects each intercostal nerve to the spinal cord.
Many of our body’s functions are controlled by the endocrine system, which consists of glands that make and secrete regulatory chemicals called hormones.

Molecular messengers: Hormones are molecules that are secreted in one part of the body and travel through the bloodstream to control what happens in another part. Endocrine glands secrete hormones directly into the bloodstream.

How do hormones help us respond to stress?

Upon sensing stress, the brain responds, sending signals to the adrenal glands.

Stress activates nerve cells

Nerve cells send signals

Hypothalamus

Pituitary gland

RH stimulates pituitary to secrete ACTH

ACTH

Each adrenal gland is actually composed of two glands that produce different hormones.

Adrenal medulla

Adrenal cortex

ACTH stimulates adrenal cortex to secrete corticosteroids

Epinephrine

Norepinephrine

KIDNEY

Corticosteroids

LIVER CELL

TARGET CELL

Epinephrine

Receptor

Cell membrane

Other proteins

A series of events results in release of glucose

Glycogen

Glucose

Glucose is used for energy

Corticosteroid

Cell membrane

Receptor protein

Cell nucleus

Gene activation

DNA

Transcription

mRNA

Translation

New protein

Immediate response:

Increased blood glucose, blood pressure, breathing rate, and metabolic rate

Long-term response:

Kidneys retain sodium and water, increased glucose, increased blood volume and blood pressure, immune system may be suppressed

There are two main kinds of hormones:

1. **Hormones made from amino acids**

 These hormones may be modified amino acids, peptides, or proteins. They work by binding to and activating specific receptors on cell membranes. This causes a series of events inside the cell.

 Examples: epinephrine, norepinephrine, insulin, melatonin, LH, FSH

2. **Steroid Hormones**

 Steroids are lipids made from cholesterol. Steroid hormones enter target cells and attach to the cell’s DNA to either start or stop production of a protein (the gene product).

 Examples: corticosteroids, oestrogen, testosterone, androgen

The Pituitary Gland

The pituitary gland, located in the brain, produces hormones that regulate hormones produced by other glands. It also produces several different hormones that regulate bone and muscle growth, body changes at puberty, the menstrual cycle, child birth, lactation, water retention in the kidneys, and the male sexual response.

Males have testes instead of ovaries

A testis gland hangs inside each scrotum. After puberty, in addition to producing sperm, the testes produce testosterone, the hormone that stimulates growth of facial and genital hair, a deeper voice, and muscle and bone growth.
Pituitary gland —
a ‘master’ gland, that regulates other glands;
produces the hormones LH, FSH, ACTH, TSH,
ADH, prolactin, growth hormone, and oxytocin

Hypothalamus —
releases hormones that
regulate the pituitary gland

Thyroid gland —
produces thyroxine and calcitonin (which lowers calcium levels)

Parathyroid glands —
produce parathyroid hormone,
which raises blood calcium levels

Thymus gland —
produces the hormone thymosin,
which stimulates T-cell development
in the immune system

Adrenal gland —
produces hormones that increase blood
glucose and that make the kidneys
retain sodium and excrete calcium

Pancreas —
produces insulin, which raises
blood glucose, and glucagon,
which lowers it

Ovaries —
produce progesterone and
oestrogens, which make the
uterine lining grow and maintain
female sex characteristics
(menstruation, pregnancy, etc)

Pineal gland —
produces melatonin,
which is involved in establishing daily and seasonal cycles
Why do we drink water?
Our body is about 70% water. Some parts are more or less watery: the grey matter of the brain is about 85% water; fat cells contain only about 15% water.

A person normally takes in between 1.5 and 3.5 litres of water each day (in both food and drink), depending on how hot and dry the weather is. Obviously we cannot keep accumulating all that water - our body gets rid of the same amount of water as it ingests.

So why do we need to keep taking in water each day?
1. To sweat. When we sweat, water evaporates from our skin, which removes excess heat from our body. So the hotter we get, the more water we need to drink. About 40% of the water we take in leaves as sweat.

2. To wash the insides of our bodies - to remove waste products. This is what the urinary system does. About 60% of the water we take in leaves as urine.

How do the kidneys remove wastes from the blood?
Each kidney contains millions of nephrons, which filter the blood that passes through them. In the nephron, capillaries pass through the glomerulus. Slits in the glomerulus prevent blood cells and larger molecules from passing out.

The acidity and concentrations of various substances in the blood are maintained by diffusion and active transport of excess amounts into urine collecting tubules.

The urine is composed of water (about 95%), potassium, bicarbonate, sodium, glucose, amino acids, and the waste products urea and uric acid.

The urinary system regulates fluids in the body. The kidneys help maintain the amount, chemical composition, and acidity of fluids. They do this by collecting water and waste products from the blood and excreting them in the form of urine. Urine is stored in the urinary bladder before it is excreted through the urethra.

A NEPHRON

- **Glomerulus** filters the blood: water and solutes from blood enter the nephron
- **Nephron tubule**
- **Arteriole**
- **To renal vein**
- **Collecting duct**
- **Loop of Henle with capillary network**
- **Renal medulla**
- **Renal cortex**
- **Ureter**
- **Renal vein**
- **Renal artery**
- **Renal medulla**
- **Renal cortex**
- **urine**
- **Glomerulus**
- **urine**

THE KIDNEY

Each renal medulla contains about a million nephrons.
Kidneys
(just inside the back ribs)
regulate the chemical composition of fluids in the body

Renal artery
brings blood containing oxygen and urea from the aorta to the kidneys

Renal vein
brings filtered blood from the kidneys to the inferior vena cava

Ureter
carries urine from the kidneys to the urinary bladder

Urinary bladder
an expandable, muscular sac that retains urine until it is discharged from the body

Urethra
the tube through which urine is discharged from the body; it is surrounded by muscles that allow us to control urination
The survival of the human population is maintained by reproduction. In order for sexual reproduction to occur, a woman’s ovaries produce ova (eggs) and a man’s testes produce sperm. After an egg has been fertilised by a sperm, it grows inside the woman’s uterus to produce a new human being.

Female Reproductive Organs

(side view)

- Fallopian tubes
- Ovary
- Uterus
- Cervix
- Urinary bladder
- Vagina
- Clitoris
- Hymen
- Anus

The Menstrual Cycle

Between the ages of about 12 and 50, a woman produces one ripe ovum about every 24-30 days. The ova are all present in the ovaries at birth, but they are not ready to be released.

1. Thin lining inside the uterus after menstruation

Now one ovum is almost ready. The lining of the uterus has also thickened in order to get ready to nourish a fertilized ovum.

2. Ovulation: the ovum is released, to go into the fallopian tube, where it may be fertilized by a sperm.

3. Lining ready for a fertilized egg

In case fertilisation does not occur, the lining is shed (menstrual bleeding).

4. Blood and old tissues are released

...then a new cycle begins.

At conception, a female egg, or ovum, is fertilized by a male sperm. The DNA in the head of the sperm enters the ovum, to be combined with the DNA in the nucleus of the ovum.

Male Reproductive System

- Seminal vesicles produce a seminal fluid
- Prostate gland produces a seminal fluid
- Vas deferens
- Testis produces sperm
- Scrotum (the sac that holds the testes outside of the abdomen, to keep them cool, as required for sperm production

Men produce sperm in their testes. During sexual stimulation, sperm travel through the vas deferens and are added to the fluids produced by the prostate gland and seminal vesicles, to make semen. Semen is ejaculated through the erect penis into the woman’s vagina in order to fertilise an ovum.
Uterus
an expandable, muscular sac that protects and nourishes developing offspring

Fallopian tubes
bring the ovum to the uterus and sperm to the ovum; this is where fertilisation usually occurs

Ovaries
contain the ova, one of which is released during each menstrual cycle; they also produce hormones

Cervix
the mouth of the uterus; also produces mucus to assist in fertilisation

Vagina
the passage from the uterus through which childbirth occurs; menstrual blood is discharged through the vagina; copulation occurs when the penis enters the vagina
This is a reference book. Use it to help find answers to your questions about the human body.

For example, here are some questions. Use the Table of Contents and the Index to look for information and pictures in the book that will help you to think of the answers.

(1) How many vertebrae do you have?
(2) Name a few different ways your body can get dehydrated.
(3) Which muscles lie outside the rib cage?
(4) Which muscles lie inside the rib cage?
(5) Is the urinary bladder in front of or behind the uterus?
(6) When a mosquito bites you, why do you get a red swelling?
(7) Which organs come in pairs?
(8) Which muscles do not come in pairs?
(9) What are glial cells?
(10) Inhaling smoke has an immediate effect on the brain. Trace the path of cigarette smoke in the body, and explain how it can affect the brain.
(11) Why does sitting under a fan make you feel cooler? If you place a plastic chair under a fan, will the chair also get cooler? If you place a running computer under a fan, will the computer get cooler? Compare and explain what happens in each case.
(12) Through which organs, body systems, and parts of body systems does a nutrient pass from the time it enters your mouth until it reaches your big toe?
(13) Name some components of the central nervous system (CNS).
(14) Name some components of the peripheral nervous system.
(15) What is oestrogen and what is its function?
(16) How does the muscular system change over a period of: (a) seconds? (b) hours? (c) weeks? (d) years?
(17) How does the endocrine system change over a period of: (a) seconds? (b) hours? (c) weeks? (d) years?
(18) Which parts of your body send electrical signals?
(19) How can it be that a very tired, worn out old woman can suddenly get enough energy to get up and run to shelter when she sees an airplane coming to drop bombs on her village?
(20) What makes the AR valves open?
(21) What problems might you have if there is something wrong with the functioning of your cerebellum?
(22) List the different kinds of fluids in the human body. What are the similarities and differences between them?
(23) What are some reasons why a woman may not get pregnant even though semen has been deposited in her vagina?
(24) Which parts of your body contain the most lymph nodes?
(25) When the bottom of your heart contracts, does this push blood into the top of your heart? Explain why or why not.

(26) List 20-30 ways in which your body is bilaterally symmetric. Speculate on possible reasons why it has this symmetry.

(27) List 20-30 ways in which your body is not bilaterally symmetric.

(28) List similarities and difference between the ovaries and the testes.

(29) Which abdominal organs lie above the waist, which lie below the waist, and which cross the waist?

(30) What would happen if the bronchioles were not lined with mucus membranes?

(31) Why do people say you should not eat too quickly? What happens if you do not thoroughly chew your food?

(32) How do the reproductive and endocrine systems interact?

(33) How do the respiratory and circulatory systems interact?

(34) What would happen if the length of the small intestine was decreased?

(35) A brain transplant has never been done. What would happen if it was done?

(36) Why might a woman stop menstruating?

(37) Why are your faeces more solid when you are constipated?

(38) What are the sensory signals that the person is getting in the top left-hand picture on page 16?

(39) What is the connection between the lymphatic system and the circulatory system?

(40) List 6 to 10 factors that influence the shape and size of a person’s stomach.

(41) What might happen if the semilunal valves leak?

(42) Why do lymph glands get swollen when you catch a cold?

(43) Why do you get a sour taste in your mouth after vomiting?

(44) Meghna and Farhaz both weigh 65 kg, but Farhaz is 75% water and Meghna is 65% water. What could be some reasons for this difference?

(45) Name some nerves that are named for the bones they pass by.

(46) If your liver is not functioning properly, what kinds of foods should you eat less of?

(47) Trace the journey of a carbon dioxide molecule from a cell in your little finger out your body through your nose.

(48) What are the differences between the female and male human body?

(49) In what ways could the human body be improved (if it was actually possible to ‘redesign’ the human body)?

(50) Write some more questions like these that can be answered by referring to this book.

(51) Write some important questions about the human body that are not answered in this book.